Generating weights for modules of vector-valued modular forms

Luca Candelori (joint w/ C. Franc, G. Kopp (Michigan))

LSU

Wesleyan University, June 3rd, 2016
The metaplectic group

- The **metaplectic group** $\text{Mp}_2(\mathbb{Z})$ is the unique nontrivial central extension

\[1 \rightarrow \mu_2 \rightarrow \text{Mp}_2(\mathbb{Z}) \rightarrow \text{SL}_2(\mathbb{Z}) \rightarrow 1. \]
The metaplectic group

• The **metaplectic group** \(\text{Mp}_2(\mathbb{Z}) \) is the unique nontrivial central extension

\[
1 \rightarrow \mu_2 \rightarrow \text{Mp}_2(\mathbb{Z}) \rightarrow \text{SL}_2(\mathbb{Z}) \rightarrow 1.
\]

• \((A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \phi(\tau)) \in \text{Mp}_2(\mathbb{Z}), A \in \text{SL}_2(\mathbb{Z}), \phi^2 = c\tau + d, \tau \in \mathfrak{h}.)\]
The metaplectic group

- The **metaplectic group** $\text{Mp}_2(\mathbb{Z})$ is the unique nontrivial central extension

\[1 \to \mu_2 \to \text{Mp}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}) \to 1. \]

- $\left(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \phi(\tau) \right) \in \text{Mp}_2(\mathbb{Z}), \ A \in \text{SL}_2(\mathbb{Z}), \ \phi^2 = c\tau + d, \ \tau \in \mathfrak{h}.$

- Multiplication:

\[(A_1, \phi_1(\tau)) \cdot (A_2, \phi_2(\tau)) = (A_1 A_2, \phi_1(A_2 \tau) \phi_2(\tau)). \]
The metaplectic group

- The metaplectic group \(\text{Mp}_2(\mathbb{Z}) \) is the unique nontrivial central extension

\[
1 \to \mu_2 \to \text{Mp}_2(\mathbb{Z}) \to \text{SL}_2(\mathbb{Z}) \to 1.
\]

- \((A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \phi(\tau)) \in \text{Mp}_2(\mathbb{Z}), A \in \text{SL}_2(\mathbb{Z}), \phi^2 = c\tau + d, \tau \in \mathfrak{h} \).

- Multiplication:

 \[(A_1, \phi_1(\tau)) \cdot (A_2, \phi_2(\tau)) = (A_1A_2, \phi_1(A_2\tau)\phi_2(\tau)).\]

- Generators: \(T := ((1 1) , 1), S := ((0 -1) , \sqrt{\tau}) \)
Vector valued modular forms

Let $\rho : \text{Mp}_2(\mathbb{Z}) \to \text{GL}(V)$ be complex, finite-dimensional representation.

Definition

A ρ-valued modular form of weight $k \in \frac{1}{2}\mathbb{Z}$ is a holomorphic function $f : \mathfrak{h} \to V$ such that

$$f(\gamma \tau) = \phi^{2k} \rho(M) f(\tau)$$

for all $M = (\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$.

- Growth conditions at ∞ are specified by a matrix L such that $\rho(T) = e^{2\pi i L}$.

Denote by $M_k(\rho)$ (resp. $S_k(\rho)$) the space of holomorphic modular forms (resp. cusp forms).
Vector valued modular forms

Let $\rho : \text{Mp}_2(\mathbb{Z}) \rightarrow \text{GL}(V)$ be complex, finite-dimensional representation.

Definition

A ρ-valued modular form of weight $k \in \frac{1}{2}\mathbb{Z}$ is a holomorphic function $f : \mathfrak{h} \rightarrow V$ such that

$$f(\gamma \tau) = \phi^{2k} \rho(M) f(\tau)$$

for all $M = (\gamma, \phi) \in \text{Mp}_2(\mathbb{Z})$.

- Growth conditions at ∞ are specified by a matrix L such that $\rho(T) = e^{2\pi i L}$

- Denote by $M_k(\rho)$ (resp. $S_k(\rho)$) the space of holomorphic modular forms (resp. cusp forms).
The free-module Theorem

Let

\[M(\rho) := \bigoplus_{k \in \frac{1}{2}\mathbb{Z}} M_k(\rho), \]

viewed as a module over \(M(1) = \mathbb{C}[E_4, E_6] \).
The free-module Theorem

Let

$$M(\rho) := \bigoplus_{k \in \frac{1}{2} \mathbb{Z}} M_k(\rho),$$

viewed as a module over $M(1) = \mathbb{C}[E_4, E_6]$.

Theorem (C., Franc, 2015)

(i) $M(\rho)$ is a free module of rank $n = \dim \rho$ over $M(1)$.

(ii) If $k_1 \leq \ldots \leq k_n$, $k_j \in \frac{1}{2} \mathbb{Z}$, are the weights of the free generators, then

$$\sum_{j=1}^{n} k_j = 12 \text{ Tr}(L).$$

(iii) If ρ is unitary, then $0 \leq k_j \leq 23/2$.

Finding the generating weights

Main Question

Given ρ, find the weights k_1, \ldots, k_n of the generators $M(\rho)$, the generating weights of $M(\rho)$.
Finding the generating weights

Main Question

Given ρ, find the weights k_1, \ldots, k_n of the generators $M(\rho)$, the generating weights of $M(\rho)$.

- We have

$$\sum_{k \in \frac{1}{2} \mathbb{Z}} \dim M_k(\rho) t^k = \frac{t^{k_1} + \ldots + t^{k_n}}{(1 - t^4)(1 - t^6)} \in \mathbb{Z}[t^{1/2}]$$

so the question is equivalent to finding $\dim M_k(\rho)$ for all k.
Finite quadratic modules

Definition

A **finite quadratic module** is a pair \((D, q)\) of a finite abelian group \(D\) together with a quadratic form \(q : D \to \mathbb{Q}/\mathbb{Z}\), whose associated bilinear form we denote by \(b(x, y) := q(x + y) - q(x) - q(y)\).
Finite quadratic modules

Definition

A **finite quadratic module** is a pair \((D, q)\) of a finite abelian group \(D\) together with a quadratic form \(q : D \to \mathbb{Q}/\mathbb{Z}\), whose associated bilinear form we denote by \(b(x, y) := q(x + y) - q(x) - q(y)\).

E.g.

For \(m > 0\) even, let \(\Lambda = (\mathbb{Z}, x \mapsto \frac{m}{2}x^2)\), a rank 1 lattice. The discriminant form of \(\Lambda\) is the finite quadratic module

\[
A_m := (\mathbb{Z}/m\mathbb{Z}, x \mapsto \frac{x^2}{2m})
\]
The Weil Representation

Let (D, q) be a finite quadratic module. Let $\mathbb{C}(D)$ be the \mathbb{C}-vector space of functions $f : D \to \mathbb{C}$. This space has a canonical basis $\{\delta_x\}_{x \in D}$ of delta functions, i.e. $\delta_x(y) = \delta_{x,y}$.
The Weil Representation

Let \((D, q)\) be a finite quadratic module. Let \(\mathbb{C}(D)\) be the \(\mathbb{C}\)-vector space of functions \(f : D \to \mathbb{C}\). This space has a canonical basis \(\{\delta_x\}_{x \in D}\) of delta functions, i.e. \(\delta_x(y) = \delta_{x,y}\).

Definition

The **Weil representation** \(\rho_D : \text{Mp}_2(\mathbb{Z}) \to \text{GL}(\mathbb{C}(D))\) is defined with respect to the basis \(\{\delta_x\}_{x \in D}\) by

\[
\rho_D(T)(\delta_x) = e^{-2\pi i q(x)} \delta_x
\]

\[
\rho_D(S)(\delta_x) = \frac{\sqrt{-\text{sig}(D)}}{\sqrt{|D|}} \sum_{y \in D} e^{2\pi i b(x,y)} \delta_y,
\]

where \(\frac{1}{\sqrt{|D|}} \sum_{x \in D} e^{2\pi i q(x)} = \sqrt{i}^{\text{sig}(D)}\).
Generating weights of Weil representations

Main Question

Given D, find the generating weights of $M(\rho_D)$.

(Equivalent to finding $\text{dim } M_k(\rho_D)$ for all $k \in \frac{1}{2}\mathbb{Z}$).
Generating weights of Weil representations

Main Question

Given D, find the generating weights of $M(\rho_D)$.

(Equivalent to finding $\dim M_k(\rho_D)$ for all $k \in \frac{1}{2} \mathbb{Z}$).

E.g.

For $D = A_m$, $k \in \frac{1}{2} + \mathbb{Z}$, we have

$$M_k(\rho_{A_m}) \simeq J_{k+1/2, m/2},$$

i.e. Jacobi forms of weight $k + 1/2$, index $m/2$ and

$$M(\rho_D) \simeq J_{m/2}$$

the (free) $\mathbb{C}[E_4, E_6]$-module of Jacobi forms of index $m/2$.
Attempt to compute $\dim M_k(\rho_D)$ via Riemann-Roch

- Form the vector bundle $\mathcal{W}_k(\rho_D)$ over $\mathcal{M}_{1/2} = \overline{M_{p_2}(\mathbb{Z}) \setminus \mathfrak{h}}$.

\[\chi(\mathcal{W}_k(\rho_{A_2p})) = \dim M_k(\rho_{A_2p}) - \dim \mathcal{H}_1(\mathcal{W}_k(\rho_{A_2p})) \]

- When is the \mathcal{H}_1 term zero?

Theorem (Case A_{2p}, $p > 3$ prime, $k \in 1/2 + \mathbb{Z}$)

Let L_p such that $e^{2\pi i L_p} = \rho_{A_2p}(T)$, and with eigenvalues in $[0, 1)$.

\[\chi(\mathcal{W}_k(\rho_{A_2p})) = 5 + k - \frac{1}{2} \text{Tr}(L_p) + (-1)^{2k} \left(\delta + 5 + \frac{k}{12} \right) + \epsilon_{\pm} \]

Here $\delta = \frac{1}{8} (2 + (-1)^{p/3})$, $\epsilon_{\pm} = \frac{1}{6} (1 \pm (-1)^p)$.
Attempt to compute \(\dim M_k(\rho_D) \) via Riemann-Roch

- Form the vector bundle \(\mathcal{W}_k(\rho_D) \) over \(\overline{\mathcal{M}_{1/2}} = \overline{Mp_2(\mathbb{Z})\backslash \mathfrak{h}} \).
- Compute \(\chi(\mathcal{W}_k(\rho_D)) = \dim M_k(\rho_D) - \dim H^1(\mathcal{W}_k(\rho_D)) \).
Attempt to compute \(\dim \mathcal{M}_k(\rho_D) \) via Riemann-Roch

- Form the vector bundle \(\mathcal{W}_k(\rho_D) \) over \(\overline{M_{1/2}} = \overline{Mp}_2(\mathbb{Z})\backslash \mathfrak{h} \).

- Compute \(\chi(\mathcal{W}_k(\rho_D)) = \dim \mathcal{M}_k(\rho_D) - \dim H^1(\mathcal{W}_k(\rho_D)) \)

- When is the \(H^1 \) term zero?
Attempt to compute \(\dim M_k(\rho_D) \) via Riemann-Roch

- Form the vector bundle \(\mathcal{W}_k(\rho_D) \) over \(\mathcal{M}_{1/2} = \overline{\text{Mp}_2(\mathbb{Z}) \backslash \mathfrak{h}} \).

- Compute \(\chi(\mathcal{W}_k(\rho_D)) = \dim M_k(\rho_D) - \dim H^1(\mathcal{W}_k(\rho_D)) \)

- When is the \(H^1 \) term zero?

Theorem (Case \(A_{2p}, p > 3 \) prime, \(k \in 1/2 + \mathbb{Z} \))

Let \(L_p \) such that \(e^{2\pi i L_p} = \rho_{A_{2p}}(T) \), and with eigenvalues in \([0, 1)\).

\[
\chi(\mathcal{W}_k(\rho_{A_{2p}})) = \frac{5 + k}{12} p - \frac{1}{2} \text{Tr}(L_p) + (-1)^{2k}(\delta + \frac{5 + k}{12}) + \epsilon_{\pm}
\]

Here

\[
\delta := \frac{1}{8} \left(2 + \left(-\frac{1}{p} \right) \right), \quad \epsilon_{\pm} := \frac{1}{6} \left(1 \pm \left(\frac{p}{3} \right) \right)
\]
For $\rho = \rho_{A_{2p}}$, p prime, we have:

(i) $M_k(\rho) = 0$ if $k < 0$.

(ii) $M_k(\rho) = 0$ if $k \in \mathbb{Z}$.

(iii) $\dim M_k(\rho) = \chi(W_k(\rho))$, $k > 3/2$.

(iv) $M_{1/2}(\rho) = 0$ (Serre-Stark, Skoruppa).

(v) $\dim M_{3/2}(\rho) = \chi(W_{3/2}(\rho))$ (i.e. $H_1 = 0$, Skoruppa).
Case A_{2p}

For $\rho = \rho_{A_{2p}}$, p prime, we have:

(i) $M_k(\rho) = 0$ if $k < 0$.

(ii) $M_k(\rho) = 0$ if $k \in \mathbb{Z}$.
Case A_{2p}

For $\rho = \rho_{A_{2p}}$, p prime, we have:

(i) $M_k(\rho) = 0$ if $k < 0$.

(ii) $M_k(\rho) = 0$ if $k \in \mathbb{Z}$.

Serre Duality: $\dim H^1(\mathcal{W}_k(\rho_D)) = \dim S_{2-k}(\rho^*)$
Case A_{2p}

For $\rho = \rho_{A_{2p}}$, p prime, we have:

(i) $M_k(\rho) = 0$ if $k < 0$.

(ii) $M_k(\rho) = 0$ if $k \in \mathbb{Z}$.

Serre Duality: $\dim H^1(\mathcal{W}_k(\rho_D)) = \dim S_{2-k}(\rho^*)$

(iii) $\dim M_k(\rho) = \chi(\mathcal{W}_k(\rho)), k > 3/2$
Case A_{2p}

For $\rho = \rho_{A_{2p}}$, p prime, we have:

(i) $M_k(\rho) = 0$ if $k < 0$.

(ii) $M_k(\rho) = 0$ if $k \in \mathbb{Z}$.

Serre Duality: $\dim H^1(\mathcal{W}_k(\rho_D)) = \dim S_{2-k}(\rho^*)$

(iii) $\dim M_k(\rho) = \chi(\mathcal{W}_k(\rho))$, $k > 3/2$

(iv) $M_{1/2}(\rho) = 0$ (Serre-Stark, Skoruppa)
Case A_{2p}

For $\rho = \rho_{A_{2p}}$, p prime, we have:

(i) $M_k(\rho) = 0$ if $k < 0$.

(ii) $M_k(\rho) = 0$ if $k \in \mathbb{Z}$.

Serre Duality: $\dim H^1(\mathcal{W}_k(\rho_D)) = \dim S_{2-k}(\rho^*)$

(iii) $\dim M_k(\rho) = \chi(\mathcal{W}_k(\rho)), k > 3/2$

(iv) $M_{1/2}(\rho) = 0$ (Serre-Stark, Skoruppa)

(v) $\dim M_{3/2}(\rho) = \chi(\mathcal{W}_{3/2}(\rho))$ (i.e. $H^1 = 0$, Skoruppa).
E.g.

For $p = 5$, the generating weights for $M(\rho_{A_{10}})$ are

$$\frac{1}{2} (7, 9, 11, 11, 13, 15, 15, 17, 19, 21)$$
Compuations

E.g.
For $p = 5$, the generating weights for $M(\rho_{A_{10}})$ are

$$\frac{1}{2}(7, 9, 11, 11, 13, 15, 15, 17, 19, 21)$$

E.g.
For $p = 7$, the generating weights for $M(\rho_{A_{14}})$ are

$$\frac{1}{2}(7, 7, 9, 11, 11, 11, 13, 13, 15, 15, 17, 17, 19, 21)$$
Compuations

E.g.

For $p = 5$, the generating weights for $M(\rho_{A_{10}})$ are

$$\frac{1}{2}(7, 9, 11, 11, 13, 15, 15, 17, 19, 21)$$

E.g.

For $p = 7$, the generating weights for $M(\rho_{A_{14}})$ are

$$\frac{1}{2}(7, 7, 9, 11, 11, 11, 13, 13, 15, 15, 17, 17, 19, 21)$$

Try some larger primes $p = 61, 1151, 4139, 13109, ...$
Generating weights for $m = 2p$, $p \geq 5$

<table>
<thead>
<tr>
<th>weight</th>
<th>multiplicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2$</td>
<td>0</td>
</tr>
<tr>
<td>$3/2$</td>
<td>$\frac{13}{24} (p + 1) - \frac{1}{2} \text{Tr}(L_p) - \delta - \epsilon_+$</td>
</tr>
<tr>
<td>$5/2$</td>
<td>$\frac{15}{24} (p - 1) - \frac{1}{2} \text{Tr}(L_p) + \delta$</td>
</tr>
<tr>
<td>$7/2$</td>
<td>$\frac{17}{24} (p + 1) - \frac{1}{2} \text{Tr}(L_p) - \delta + \epsilon_+$</td>
</tr>
<tr>
<td>$9/2$</td>
<td>$\frac{19}{24} (p - 1) - \frac{1}{2} \text{Tr}(L_p) + \delta + \epsilon_-$</td>
</tr>
<tr>
<td>$11/2$</td>
<td>$\frac{1}{3} (p + 1) + \epsilon_+$</td>
</tr>
<tr>
<td>$13/2$</td>
<td>$\frac{1}{3} (p - 1) - \epsilon_-$</td>
</tr>
<tr>
<td>$15/2$</td>
<td>$-\frac{5}{24} (p + 1) + \frac{1}{2} \text{Tr}(L_p) + \delta - \epsilon_+$</td>
</tr>
<tr>
<td>$17/2$</td>
<td>$-\frac{7}{24} (p - 1) + \frac{1}{2} \text{Tr}(L_p) - \delta - \epsilon_-$</td>
</tr>
<tr>
<td>$19/2$</td>
<td>$-\frac{9}{24} (p + 1) + \frac{1}{2} \text{Tr}(L_p) + \delta$</td>
</tr>
<tr>
<td>$21/2$</td>
<td>$-\frac{11}{24} (p - 1) + \frac{1}{2} \text{Tr}(L_p) - \delta + \epsilon_-$</td>
</tr>
<tr>
<td>$23/2$</td>
<td>0</td>
</tr>
</tbody>
</table>
Theorem (C., Franc, Kopp, 2016)

Let p be an odd prime and let $m = 2p$, $p > 3$. Then

\[
\text{Tr}(L_p) = \begin{cases}
 p + \frac{1}{2} h_p - \frac{1}{4} & \text{if } p \equiv 1 \pmod{4}, \\
 p + 2h_p - \frac{1}{4} & \text{if } p \equiv 3 \pmod{8}, \\
 p + h_p - \frac{1}{4} & \text{if } p \equiv 7 \pmod{8}.
\end{cases}
\]

where h_p is the class number of $\mathbb{Q}(\sqrt{-p})$.

Corollary

If $\rho = \rho_{A,2p}$, then

\[
\text{Tr}(L_p)^{2p} \to \frac{1}{2}, \quad p \to \infty.
\]

Heuristic: $\text{Tr}(L_p) \approx \frac{1}{2} \dim(\rho)$.

Distribution as $p \to \infty$

Theorem (C., Franc, Kopp, 2016)

Let p be an odd prime and let $m = 2p$, $p > 3$. Then

$$\text{Tr}(L_p) = \begin{cases}
 p + \frac{1}{2} h_p - \frac{1}{4} & p \equiv 1 \pmod{4}, \\
 p + 2h_p - \frac{1}{4} & p \equiv 3 \pmod{8}, \\
 p + h_p - \frac{1}{4} & p \equiv 7 \pmod{8}.
\end{cases}$$

where h_p is the class number of $\mathbb{Q}(\sqrt{-p})$.

Corollary

If $\rho = \rho_{A_{2p}}$, then

$$\frac{\text{Tr}(L_p)}{2p} \to \frac{1}{2}, \quad p \to \infty.$$
Distribution of weights for $m = 2p$, as $p \to \infty$

<table>
<thead>
<tr>
<th>weight</th>
<th>proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/2$</td>
<td>0</td>
</tr>
<tr>
<td>$3/2$</td>
<td>$1/48$</td>
</tr>
<tr>
<td>$5/2$</td>
<td>$3/48$</td>
</tr>
<tr>
<td>$7/2$</td>
<td>$5/48$</td>
</tr>
<tr>
<td>$9/2$</td>
<td>$7/48$</td>
</tr>
<tr>
<td>$11/2$</td>
<td>$8/48$</td>
</tr>
<tr>
<td>$13/2$</td>
<td>$8/48$</td>
</tr>
<tr>
<td>$15/2$</td>
<td>$7/48$</td>
</tr>
<tr>
<td>$17/2$</td>
<td>$5/48$</td>
</tr>
<tr>
<td>$19/2$</td>
<td>$3/48$</td>
</tr>
<tr>
<td>$21/2$</td>
<td>$1/48$</td>
</tr>
<tr>
<td>$23/2$</td>
<td>0</td>
</tr>
</tbody>
</table>
Future directions

- Compute the weight distribution for all m.
Future directions

- Compute the weight distribution for all m.

- How general is this distribution, among families of Weil representations? Among all unitary representations?
Future directions

- Compute the weight distribution for all m.

- How general is this distribution, among families of Weil representations? Among all unitary representations?

- Deduce bounds for weight 1 (scalar) modular forms?
Future directions

- Compute the weight distribution for all m.
- How general is this distribution, among families of Weil representations? Among all unitary representations?
- Deduce bounds for weight 1 (scalar) modular forms?
- Applications to CFT
Future directions

- Compute the weight distribution for all m.

- How general is this distribution, among families of Weil representations? Among all unitary representations?

- Deduce bounds for weight 1 (scalar) modular forms?

- Applications to CFT

Moral of the story

Generating weights might be easier to study than dimensions!