Toward Showing Equality in Lemma 25 from Bshouty's "Learning with Errors in Answers to Membership Queries"

Livia Overand

Aug 1, 2005

1 Introduction

In "Learning with Errors in Answers to Membership Queries" it is shown that for any two boolean functions $f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n_{2}} \rightarrow\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n_{1}}\right)$ and $y=\left(y_{1}, \ldots y_{n_{2}}\right)$ we have,

$$
\operatorname{size}_{D C D}(f(x) \oplus g(y)) \leq \operatorname{size}_{D C D}(f(x)) \cdot \operatorname{size}_{D C D}(g(y)) .
$$

I would like to extend this to prove equality. I have made progress in doing so, but lack the proof for one crucial step. This paper documents the progress I have made and describes the problems that I have encountered in attempting to complete this proof.

2 Definitions

1. The number of conflicts between two terms is the number of variables occurring unnegated in one term and negated in the other.
2. A DNF is disjoint if any two of its terms have at least one conflict.
3. Any two terms that have at least two conflicts can not be covered by a single term of fewer variables.
4. The minimal disjoint CDNF representation for the always false function is $(0,1)$, where $\operatorname{size}_{D C D}((0,1))=1$.
5. The minimal disjoint DNF representation for the always false function is 0 , where $\operatorname{size}_{D D N F}(0)=0$.
6. The minimal disjoint CDNF representation for the always true function is $(1,0)$, where $\operatorname{size}_{D C D}((1,0))=1$.
7. The minimal disjoint DNF representation for the always true functon is 1 , where $\operatorname{size}_{D D N F}(1)=1$.
8. $\operatorname{size}_{D C D}(f)=\operatorname{size}_{D D N F}(f)+\operatorname{size}_{D D N F}(\bar{f})$
9. $(f \oplus g) \equiv(f \wedge \bar{g}) \vee(\bar{f} \wedge g) \equiv \overline{(f \wedge g) \vee(\bar{f} \wedge \bar{g})}$

3 Completed Progress

Remark 1 By definitions 5 and 6 we have,

$$
\operatorname{size}_{D C D}(f \oplus g)=\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g))+\operatorname{size}_{D D N F}((f \wedge g) \vee(\bar{f} \wedge \bar{g}))
$$

Lemma 1 For any two boolean functions $f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n_{2}} \rightarrow\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n_{1}}\right)$ and $y=\left(y_{1}, \ldots y_{n_{2}}\right)$,

$$
\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g))=\operatorname{size}_{D D N F}(f \wedge \bar{g})+\operatorname{size}_{D D N F}(\bar{f} \wedge g)
$$

Proof : First notice that for any two functions on disjoint variables we have,

$$
f \wedge \bar{g} \equiv(f \wedge \bar{g}) \wedge(f \vee \bar{g}) \equiv(f \wedge \bar{g}) \wedge \overline{(\bar{f} \wedge g)}
$$

and

$$
\bar{f} \wedge g \equiv(\bar{f} \wedge g) \wedge(\bar{f} \vee g) \equiv(\bar{f} \wedge g) \wedge \overline{(f \wedge \bar{g})}
$$

So,

$$
(f \wedge \bar{g}) \vee(\bar{f} \wedge g) \equiv[(f \wedge \bar{g}) \wedge \overline{(\bar{f} \wedge g)}] \vee[(\bar{f} \wedge g) \wedge \overline{(f \wedge \bar{g})}] \equiv(f \wedge \bar{g}) \oplus(\bar{f} \wedge g)
$$

I first show

$$
\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g)) \leq \operatorname{size}_{D D N F}(f \wedge \bar{g})+\operatorname{size}_{D D N F}(\bar{f} \wedge g)
$$

Let P and Q be a minimal disjoint DNF for $(f \wedge \bar{g})$ and $(\bar{f} \wedge g)$ of size s_{1} and s_{2} respectively. Then $P \vee Q$ is a disjoint DNF for $((f \wedge \bar{g}) \vee(\bar{f} \wedge g))$ of size $s_{1}+s_{2}$.

I now show

$$
\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g)) \geq \operatorname{size}_{D D N F}(f \wedge \bar{g})+\operatorname{size}_{D D N F}(\bar{f} \wedge g)
$$

Suppose $\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g))<\operatorname{size}_{D D N F}(f \wedge \bar{g})+\operatorname{size}_{D D N F}(\bar{f} \wedge g)$. Then, there exists some term in the disjoint DNF for $(f \wedge \bar{g}) \vee(\bar{f} \wedge g)$ that covers a portion of $f \wedge \bar{g}$ and a portion of $\bar{f} \wedge g$. Clearly, any such term must have less than $n_{1}+n_{2}$ literals, since any term with $n_{1}+n_{2}$ literals must either be in $f \wedge \bar{g}$ or in $\bar{f} \wedge g$, but not both. So consider a term that covers a portion of both $f \wedge \bar{g}$ and $\bar{f} \wedge g$ that has less than $n_{1}+n_{2}$ literals.

Case 1: All absent variables are from the domain of f. Then this term covers a portion of f and of \bar{f}. However, if no variables are removed from the domain of g, then this term still only covers a portion of g or \bar{g}, but not both.

Case 2: All absent variables are from the domain of g. Then this term covers a portion of g and of \bar{g}. However, if no variables are removed from the domain of f, then this term still only covers a portion of f or \bar{f}, but not both.

Case 3: Some variables are removed from the domain of f and from the domain of g. Then some x_{i} has been removed such that when the value of that variable changes, the value of f changes. Also some y_{i} has been removed such that when the value of that variable changes, the value of g changes. So this term covers assignments that satisfy $f \wedge \bar{g}$ and $\bar{f} \wedge g$. However, it also covers assignments that satisfy $f \wedge g$ and $\bar{f} \wedge \bar{g}$. This is a contradiction, because $(f \wedge \bar{g}) \vee(\bar{f} \wedge g)$ is zero when either $f \wedge g$ is satisfied or when $\bar{f} \wedge \bar{g}$ is satisfied. Therefore, $\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g)) \geq \operatorname{size}_{D D N F}(f \wedge \bar{g})+\operatorname{size}_{D D N F}(\bar{f} \wedge g)$.

Lemma 2 For any minimal disjoint DNF T of size s, the expression obtained by deleting any term from T is a minimal disjoint DNF of size $s-1$.

Proof : Let $T=t_{1} \vee t_{2} \vee \ldots \vee t_{s}$ and T^{\prime} be the expression obtained by deleting some t_{i} from T. Clearly, $T^{\prime}=t_{1} \vee t_{2} \vee \ldots \vee t_{i-1} \vee t_{i+1} \vee \ldots \vee t_{s}$ is a disjoint DNF of size at least $s-1$. Suppose $\operatorname{size}_{D D N F}\left(T^{\prime}\right)<s-1$. Then there is some covering of all but one of the terms in T of size less than $s-1$. This, however, is a contradiction to the minimality of T.

Fact 1 For any two boolean functions $f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n_{2}} \rightarrow\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n_{1}}\right)$ and $y=\left(y_{1}, \ldots y_{n_{2}}\right)$, there are

$$
\left(2^{2^{n_{1}}}-1\right) \cdot\left(2^{2^{n_{2}}}-1\right)+1
$$

different boolean functions $h:\{0,1\}^{n_{1}+n_{2}} \rightarrow\{0,1\}$ where h is of the form $f \wedge g$.
Proof: The number of functions on n_{1} variables is $2^{2^{n_{1}}}$. Likewise, the number of functions on n_{2} variables is $2^{2^{n_{2}}}$. Since f and g are on disjoint variables $f\left(x_{1}, \ldots x_{n_{1}}\right) \wedge g\left(y_{1}, \ldots y_{n_{2}}\right)=$ $h\left(x_{1}, \ldots x_{n_{1}}, y_{1}, \ldots y_{n_{2}}\right)$. By the product rule the number of functions $h:\{0,1\}^{n_{1}+n_{2}} \rightarrow\{0,1\}$ where h is of the form $f \wedge g$ is $2^{2^{n_{1}}} \cdot 2^{2^{n_{2}}}$. However, one of the $2^{2^{n_{1}}}$ functions is the always false function. Likewise, one of the $2^{2^{n_{2}}}$ functions is the always false function. Since $0 \wedge g=0$ and $f \wedge 0=0,2^{2^{n_{1}}}+2^{2^{n_{2}}}-1$ functions, h, will be the always false function. Therefore, the number of different functions $h:\{0,1\}^{n_{1}+n_{2}} \rightarrow\{0,1\}$ where h is of the form $f \wedge g$ is

$$
2^{2^{n_{1}}} \cdot 2^{2^{n_{2}}}-\left(2^{2^{n_{1}}}+2^{2^{n_{2}}}-1\right)+1=\left(2^{2^{n_{1}}}-1\right) \cdot\left(2^{2^{n_{2}}}-1\right)+1
$$

Fact 2 For any two boolean functions $f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}$ and $g:\{0,1\}^{n_{2}} \rightarrow\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n_{1}}\right)$ and $y=\left(y_{1}, \ldots y_{n_{2}}\right)$, if P is a minimal disjoint $D N F$ for $f(x)$ and Q is a minimal disjoint DNF for $g(y)$, then no two terms in $P \wedge Q$ can be covered by a single term of fewer variables.

Proof : Since any two terms in P have at least one conflict, any two terms in Q have at least one conflict, and P and Q are on disjoint variables, any two terms in $P \wedge Q$ have at least two conflicts. Any two terms that have two conflcits can not be covered by a single term of fewer variables.

4 Future Work

In order to finish proving

$$
\operatorname{size}_{D C D}(f(x) \oplus g(y))=\operatorname{size}_{D C D}(f(x)) \cdot \operatorname{size}_{D C D}(g(y))
$$

it is necessary to show that for any two boolean functions $f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}$ and g : $\{0,1\}^{n_{2}} \rightarrow\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n_{1}}\right)$ and $y=\left(y_{1}, \ldots y_{n_{2}}\right)$,

$$
\begin{equation*}
\operatorname{size}_{D D N F}(f \wedge g) \geq \operatorname{size}_{D D N F}(f) \cdot \operatorname{size}_{D D N F}(g) \tag{1}
\end{equation*}
$$

If this fact can be proven then it would imply that

$$
\operatorname{size}_{D D N F}((f \wedge \bar{g}) \vee(\bar{f} \wedge g)) \geq \operatorname{size}_{D D N F}(f) \cdot \operatorname{size}_{D D N F}(\bar{g})+\operatorname{size}_{D D N F}(\bar{f}) \cdot \operatorname{size}_{D D N F}(g)
$$

which would then imply that

$$
\begin{aligned}
\operatorname{size}_{D C D}(f \oplus g) & \geq \operatorname{size}_{D D N F}(f) \cdot \operatorname{size}_{D D N F}(\bar{g})+\operatorname{size}_{D D N F}(\bar{f}) \cdot \operatorname{size}_{D D N F}(g) \\
& +\operatorname{size}_{D D N F}(f) \cdot \operatorname{size}_{D D N F}(g)+\operatorname{size}_{D D N F}(\bar{f}) \cdot \operatorname{size}_{D D N F}(\bar{g}) \\
& =\left(\operatorname{size}_{D D N F}(f)+\operatorname{size}_{D D N F}(\bar{f})\right) \cdot\left(\operatorname{size}_{D D N F}(g)+\operatorname{size}_{D D N F}(\bar{g})\right) \\
& =\operatorname{size}_{D C D}(f) \cdot \operatorname{size}_{D C D}(g)
\end{aligned}
$$

I have not, however, been able to prove (1). I attempted to prove this by induction on $n=n_{1}+n_{2}$. The base case is simple. For $\mathrm{n}=0$ we have $\left(n_{1}, n_{2}\right)=(0,0)$ The only functions on zero variables are the always true or always false function. If $f \wedge g=0$ then either $f=0$ or $g=0$, and clearly $\operatorname{size}_{D D N F}(0)=0 \geq \operatorname{size}_{D D N F}(0) \cdot \operatorname{size}_{D D N F}(g)=0 \cdot \operatorname{size}_{D D N F}(g)=0$. If $f \wedge g=1$ then $f=g=1$, and clearly $\operatorname{size}_{D D N F}(1)=1 \geq \operatorname{size}_{D D N F}(1) \cdot \operatorname{size}_{D D N F}(1)=$ $1 \cdot 1=1$. Then the inductive hypothesis is for a boolean function $f \wedge g:\{0,1\}^{k} \rightarrow\{0,1\}$, where k is an arbitrary number of variables, $\operatorname{size}_{D D N F}(f \wedge g) \geq \operatorname{size}_{D D N F}(f) \cdot \operatorname{size}_{D D N F}(g)$. I have not, however, been able to find a way to use this hypothesis to prove the case for $f \wedge g:\{0,1\}^{k+1} \rightarrow\{0,1\}$.

I have also attempted to prove (1) by double induction on $\left(n_{1}, n_{2}\right)$. Again the base cases are simple, and we get the additional facts that $\forall n_{2}\left(\left(0, n_{2}\right) \rightarrow\left(0, n_{2}+1\right)\right)$ and $\forall n_{1}\left(\left(n_{1}, 0\right) \rightarrow\right.$ $\left.\left(n_{1}+1,0\right)\right)$. Again the problem is that I have not found a way to use the inductive hypothesis to prove the inductive step.

I believe my most hopeful attempt to prove (1) was by double induction on $\left(s_{1}, s_{2}\right)$, where $\operatorname{size}_{D D N F}(f)=s_{1}$ and $\operatorname{size}_{D D N F}(g)=s_{2}$. Following is an outline of my progress for this proof.
$\forall s_{1} \forall s_{2}$, if $\operatorname{size}_{D D N F}(f)=s_{1}$ and $\operatorname{size}_{D D N F}(g)=s_{2}$, then $\operatorname{size}_{D D N F}(f \wedge g)=s_{1} \cdot s_{2}$.

- Base case $\forall s_{2}$, if $\operatorname{size}_{D D N F}(f)=0$ and $\operatorname{size}_{D D N F}(g)=s_{2}$, then $\operatorname{size}_{D D N F}(f \wedge g)=0 \cdot s_{2}$.
- If $\operatorname{size}_{D D N F}(f)=0$, then f is the always false function. For any function g, $0 \wedge g=0$, so size $\sin (0 \wedge g)=0$.
- Inductive Hypothesis $\forall s_{2}$, if $\operatorname{size}_{D D N F}(f)=m$ and $\operatorname{size}_{D D N F}(g)=s_{2}$, then $\operatorname{size}_{D D N F}(f \wedge$ $g)=m \cdot s_{2}$.
- Inductive Step $\forall s_{2}$, if $\operatorname{size}_{D D N F}=m+1$ and $\operatorname{size}_{D D N F}(g)=s_{2}$, then $\operatorname{size}_{D D N F}(f \wedge$ $g)=(m+1) \cdot s_{2}$.
- Base Case If $\operatorname{size}_{D D N F}=m+1$ and $\operatorname{size}_{D D N F}(g)=0$, then $\operatorname{size}_{D D N F}(f \wedge g)=$ $(m+1) \cdot 0$.
- If $\operatorname{size}_{D D N F}(g)=0$, then g is the always false function. For any function f, $f \wedge 0=0$, so $\operatorname{size}_{D D N F}(f \wedge 0)=0$.
- Inductive Hypothesis If $\operatorname{size}_{D D N F}(f)=m+1$ and $\operatorname{size}_{D D N F}(g)=n$, then $\operatorname{size}_{D D N F}(f \wedge g)=(m+1) \cdot n$.

```
? Inductive Step If \(\operatorname{size}_{D D N F}=m+1\) and \(\operatorname{size}_{D D N F}(g)=n+1\), then \(\operatorname{size}_{D D N F}(f \wedge\)
``` \(g)=(m+1) \cdot(n+1)\).

Intuitively, this last inductive step seems possible to prove. Let \(P=p_{1} \vee p_{2} \vee \ldots \vee p_{m+1}\) be a minimal disjoint DNF for \(f\) and \(Q=q_{1} \vee q_{2} \vee \ldots \vee q_{n+1}\) be a minimal disjoint DNF for \(g\). Then, \(P \wedge Q=\bigvee_{i=1}^{m+1} \bigvee_{j=1}^{n+1}\left(p_{i} \wedge q_{j}\right)=\left[\bigvee_{i=1}^{m+1} \bigvee_{j=1}^{n}\left(p_{i} \wedge q_{j}\right)\right] \vee\left[\bigvee_{i=1}^{m+1}\left(p_{i} \wedge q_{n+1}\right)\right]\). By the inductive hypothesis, we know that \(\bigvee_{i=1}^{m+1} \bigvee_{j=1}^{n}\left(p_{i} \wedge q_{j}\right)\) is a minimal disjoint DNF of size \((m+1) \cdot n\) for \(f \wedge g\), if \(\operatorname{size}_{D D N F}(f)=m+1\) and \(\operatorname{size}_{D D N F}(g)=n\). It is also clear that \(\bigvee_{i=1}^{m+1}\left(p_{i} \wedge q_{n+1}\right)\) is a minimal disjoint DNF of size \(m+1\) for \(f \wedge g\), if \(\operatorname{size}_{D D N F}(f)=m+1\) and \(\operatorname{size}_{D D N F}(g)=1\). However, it is unclear how to prove that \(\left[\bigvee_{i=1}^{m+1} \bigvee_{j=1}^{n}\left(p_{i} \wedge q_{j}\right)\right] \vee\left[\bigvee_{i=1}^{m+1}\left(p_{i} \wedge q_{n+1}\right)\right]\) is a minimal disjoint DNF for \(f \wedge g\), if \(\operatorname{size}_{D D N F}(f)=m+1\) and \(\operatorname{size}_{D D N F}(g)=n+1\). In lemma 2, I showed that for any minimal disjoint DNF \(T\) of size \(s\), the expression obtained by deleting any term from \(T\) is a minimal disjoint DNF of size \(s-1\). If something could be said about the opposite direction, that is, if some conditions could be determined about forming a minimal disjoint DNF of size \(s\) by adding a term to minimal disjoint DNF of size \(s-1\), then I believe the inductive step could be proved.

The only way I have been able to prove (1) for any fixed \(n\) is by exhaustively considering all functions on \(n\) variables. I have, in fact, done this for \(n=1,2\), and 3 .

I have also attempted to prove that for any two boolean functions \(f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}\) and \(g:\{0,1\}^{n_{2}} \rightarrow\{0,1\}\) and two sets of disjoint variables \(x=\left(x_{1}, \ldots x_{n_{1}}\right)\) and \(y=\left(y_{1}, \ldots y_{n_{2}}\right)\), if \(P\) is a minimal disjoint DNF for \(f(x)\) of size \(s_{1}\) and \(Q\) is a minimal disjoint DNF for \(g(x)\) of size \(s_{2}\), then \(P \wedge Q\) is minimal disjoint DNF for \(f \wedge g\) of size \(s_{1} \cdot s_{2}\). Clearly, \(P \wedge Q\) is a disjoint DNF for \(f \wedge g\) of size \(s_{1} \cdot s_{2}\). Showing that \(P \wedge Q\) is minimal, however, has proved to be a difficult task. There really is no precise definition for a minimal representation of a function other than its size is smaller than any other representation of the function. A minimal representation is not unique, and there certainly are other minimal disjoint DNF representations other than \(P \wedge Q\) for \(f \wedge g\).

\section*{5 Conclusion}

In my attempt to prove that for any two boolean functions \(f:\{0,1\}^{n_{1}} \rightarrow\{0,1\}\) and \(g:\{0,1\}^{n_{2}} \rightarrow\{0,1\}\) and two sets of disjoint variables \(x=\left(x_{1}, \ldots x_{n_{1}}\right)\) and \(y=\left(y_{1}, \ldots y_{n_{2}}\right)\),
\[
\operatorname{size}_{D C D}(f(x) \oplus g(y))=\operatorname{size}_{D C D}(f(x)) \cdot \operatorname{size}_{D C D}(g(y))
\]

I have only managed to show that
\(\operatorname{size}_{D C D}(f \oplus g)=\operatorname{size}_{D D N F}(f \wedge \bar{g})+\operatorname{size}_{D D N F}(\bar{f} \wedge g)+\operatorname{size}_{D D N F}(f \wedge g)+\operatorname{size}_{D D N F}(\bar{f} \wedge \bar{g})\).
It remains to be shown that
\[
\operatorname{size}_{D D N F}(f \wedge g) \geq \operatorname{size}_{D D N F}(f) \cdot \operatorname{size}_{D D N F}(g)
\]
holds for any two boolean functions on disjoint variables. I am thouroughly convinced that this is true and that it can in fact be proven.```

