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1 Introduction

In “Learning with Errors in Answers to Membership Queries” it is shown that for any two
boolean functions f : {0, 1}n1 → {0, 1} and g : {0, 1}n2 → {0, 1} and two sets of disjoint
variables x = (x1, ...xn1) and y = (y1, ...yn2) we have,

sizeDCD(f(x)⊕ g(y)) ≤ sizeDCD(f(x)) · sizeDCD(g(y)).

I would like to extend this to prove equality. I have made progress in doing so, but lack the
proof for one crucial step. This paper documents the progress I have made and describes
the problems that I have encountered in attempting to complete this proof.

2 Definitions

1. The number of conflicts between two terms is the number of variables occurring un-
negated in one term and negated in the other.

2. A DNF is disjoint if any two of its terms have at least one conflict.

3. Any two terms that have at least two conflicts can not be covered by a single term of
fewer variables.

4. The minimal disjoint CDNF representation for the always false function is (0, 1), where
sizeDCD((0, 1)) = 1.

5. The minimal disjoint DNF representation for the always false function is 0, where
sizeDDNF (0) = 0.

6. The minimal disjoint CDNF representation for the always true function is (1, 0), where
sizeDCD((1, 0)) = 1.

7. The minimal disjoint DNF representation for the always true functon is 1, where
sizeDDNF (1) = 1.

8. sizeDCD(f) = sizeDDNF (f) + sizeDDNF (f̄)

9. (f ⊕ g) ≡ (f ∧ ḡ) ∨ (f̄ ∧ g) ≡ (f ∧ g) ∨ (f̄ ∧ ḡ)
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3 Completed Progress

Remark 1 By definitions 5 and 6 we have,

sizeDCD(f ⊕ g) = sizeDDNF ((f ∧ ḡ) ∨ (f̄ ∧ g)) + sizeDDNF ((f ∧ g) ∨ (f̄ ∧ ḡ)).

Lemma 1 For any two boolean functions f : {0, 1}n1 → {0, 1} and g : {0, 1}n2 → {0, 1} and
two sets of disjoint variables x = (x1, ...xn1) and y = (y1, ...yn2),

sizeDDNF ((f ∧ ḡ) ∨ (f̄ ∧ g)) = sizeDDNF (f ∧ ḡ) + sizeDDNF (f̄ ∧ g).

Proof : First notice that for any two functions on disjoint variables we have,

f ∧ ḡ ≡ (f ∧ ḡ) ∧ (f ∨ ḡ) ≡ (f ∧ ḡ) ∧ (f̄ ∧ g)

and
f̄ ∧ g ≡ (f̄ ∧ g) ∧ (f̄ ∨ g) ≡ (f̄ ∧ g) ∧ (f ∧ ḡ).

So,

(f ∧ ḡ) ∨ (f̄ ∧ g) ≡
[
(f ∧ ḡ) ∧ (f̄ ∧ g)

]
∨

[
(f̄ ∧ g) ∧ (f ∧ ḡ)

]
≡ (f ∧ ḡ)⊕ (f̄ ∧ g).

I first show

sizeDDNF ((f ∧ ḡ) ∨ (f̄ ∧ g)) ≤ sizeDDNF (f ∧ ḡ) + sizeDDNF (f̄ ∧ g).

Let P and Q be a minimal disjoint DNF for (f ∧ ḡ) and (f̄ ∧ g) of size s1 and s2 respectively.
Then P ∨Q is a disjoint DNF for ((f ∧ ḡ) ∨ (f̄ ∧ g)) of size s1 + s2.

I now show

sizeDDNF ((f ∧ ḡ) ∨ (f̄ ∧ g)) ≥ sizeDDNF (f ∧ ḡ) + sizeDDNF (f̄ ∧ g).

Suppose sizeDDNF ((f ∧ ḡ)∨ (f̄ ∧ g)) < sizeDDNF (f ∧ ḡ) + sizeDDNF (f̄ ∧ g). Then, there
exists some term in the disjoint DNF for (f ∧ ḡ)∨ (f̄ ∧g) that covers a portion of f ∧ ḡ and a
portion of f̄ ∧ g. Clearly, any such term must have less than n1 + n2 literals, since any term
with n1 + n2 literals must either be in f ∧ ḡ or in f̄ ∧ g, but not both. So consider a term
that covers a portion of both f ∧ ḡ and f̄ ∧ g that has less than n1 + n2 literals.

Case 1: All absent variables are from the domain of f . Then this term covers a portion
of f and of f̄ . However, if no variables are removed from the domain of g, then this term
still only covers a portion of g or ḡ, but not both.

Case 2: All absent variables are from the domain of g. Then this term covers a portion
of g and of ḡ. However, if no variables are removed from the domain of f , then this term
still only covers a portion of f or f̄ , but not both.

Case 3: Some variables are removed from the domain of f and from the domain of g.
Then some xi has been removed such that when the value of that variable changes, the value
of f changes. Also some yi has been removed such that when the value of that variable
changes, the value of g changes. So this term covers assignments that satisfy f ∧ ḡ and f̄ ∧g.
However, it also covers assignments that satisfy f ∧ g and f̄ ∧ ḡ. This is a contradiction,
because (f ∧ ḡ) ∨ (f̄ ∧ g) is zero when either f ∧ g is satisfied or when f̄ ∧ ḡ is satisfied.
Therefore, sizeDDNF ((f ∧ ḡ) ∨ (f̄ ∧ g)) ≥ sizeDDNF (f ∧ ḡ) + sizeDDNF (f̄ ∧ g). �
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Lemma 2 For any minimal disjoint DNF T of size s, the expression obtained by deleting
any term from T is a minimal disjoint DNF of size s− 1.

Proof : Let T = t1 ∨ t2 ∨ . . . ∨ ts and T ′ be the expression obtained by deleting some ti
from T . Clearly, T ′ = t1∨ t2∨ . . .∨ ti−1∨ ti+1∨ . . .∨ ts is a disjoint DNF of size at least s−1.
Suppose sizeDDNF (T ′) < s − 1. Then there is some covering of all but one of the terms in
T of size less than s− 1. This, however, is a contradiction to the minimality of T . �

Fact 1 For any two boolean functions f : {0, 1}n1 → {0, 1} and g : {0, 1}n2 → {0, 1} and
two sets of disjoint variables x = (x1, ...xn1) and y = (y1, ...yn2), there are

(22n1 − 1) · (22n2 − 1) + 1

different boolean functions h : {0, 1}n1+n2 → {0, 1} where h is of the form f ∧ g.

Proof : The number of functions on n1 variables is 22n1 . Likewise, the number of functions
on n2 variables is 22n2 . Since f and g are on disjoint variables f(x1, ...xn1) ∧ g(y1, ...yn2) =
h(x1, ...xn1 , y1, ...yn2). By the product rule the number of functions h : {0, 1}n1+n2 → {0, 1}
where h is of the form f ∧ g is 22n1 · 22n2 . However, one of the 22n1 functions is the always
false function. Likewise, one of the 22n2 functions is the always false function. Since 0∧g = 0
and f ∧ 0 = 0, 22n1 + 22n2 − 1 functions, h, will be the always false function. Therefore, the
number of different functions h : {0, 1}n1+n2 → {0, 1} where h is of the form f ∧ g is

22n1 · 22n2 − (22n1 + 22n2 − 1) + 1 = (22n1 − 1) · (22n2 − 1) + 1

�

Fact 2 For any two boolean functions f : {0, 1}n1 → {0, 1} and g : {0, 1}n2 → {0, 1} and
two sets of disjoint variables x = (x1, ...xn1) and y = (y1, ...yn2), if P is a minimal disjoint
DNF for f(x) and Q is a minimal disjoint DNF for g(y), then no two terms in P ∧ Q can
be covered by a single term of fewer variables.

Proof : Since any two terms in P have at least one conflict, any two terms in Q have at
least one conflict, and P and Q are on disjoint variables, any two terms in P ∧ Q have at
least two conflicts. Any two terms that have two conflcits can not be covered by a single
term of fewer variables. �

4 Future Work

In order to finish proving

sizeDCD(f(x)⊕ g(y)) = sizeDCD(f(x)) · sizeDCD(g(y))

it is necessary to show that for any two boolean functions f : {0, 1}n1 → {0, 1} and g :
{0, 1}n2 → {0, 1} and two sets of disjoint variables x = (x1, ...xn1) and y = (y1, ...yn2),

sizeDDNF (f ∧ g) ≥ sizeDDNF (f) · sizeDDNF (g). (1)

If this fact can be proven then it would imply that

sizeDDNF ((f ∧ ḡ) ∨ (f̄ ∧ g)) ≥ sizeDDNF (f) · sizeDDNF (ḡ) + sizeDDNF (f̄) · sizeDDNF (g),
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which would then imply that

sizeDCD(f ⊕ g) ≥ sizeDDNF (f) · sizeDDNF (ḡ) + sizeDDNF (f̄) · sizeDDNF (g)

+ sizeDDNF (f) · sizeDDNF (g) + sizeDDNF (f̄) · sizeDDNF (ḡ)

= (sizeDDNF (f) + sizeDDNF (f̄)) · (sizeDDNF (g) + sizeDDNF (ḡ))

= sizeDCD(f) · sizeDCD(g)

I have not, however, been able to prove (1). I attempted to prove this by induction on
n = n1 + n2. The base case is simple. For n=0 we have (n1, n2) = (0, 0) The only functions
on zero variables are the always true or always false function. If f ∧ g = 0 then either f = 0
or g = 0, and clearly sizeDDNF (0) = 0 ≥ sizeDDNF (0) · sizeDDNF (g) = 0 · sizeDDNF (g) = 0.
If f ∧ g = 1 then f = g = 1, and clearly sizeDDNF (1) = 1 ≥ sizeDDNF (1) · sizeDDNF (1) =
1 · 1 = 1. Then the inductive hypothesis is for a boolean function f ∧ g : {0, 1}k → {0, 1},
where k is an arbitrary number of variables, sizeDDNF (f ∧ g) ≥ sizeDDNF (f) · sizeDDNF (g).
I have not, however, been able to find a way to use this hypothesis to prove the case for
f ∧ g : {0, 1}k+1 → {0, 1}.

I have also attempted to prove (1) by double induction on (n1, n2). Again the base cases
are simple, and we get the additional facts that ∀n2((0, n2) → (0, n2 +1)) and ∀n1((n1, 0) →
(n1+1, 0)). Again the problem is that I have not found a way to use the inductive hypothesis
to prove the inductive step.

I believe my most hopeful attempt to prove (1) was by double induction on (s1, s2), where
sizeDDNF (f) = s1 and sizeDDNF (g) = s2. Following is an outline of my progress for this
proof.

∀s1∀s2, if sizeDDNF (f) = s1 and sizeDDNF (g) = s2, then sizeDDNF (f ∧ g) = s1 · s2.

• Base case ∀s2, if sizeDDNF (f) = 0 and sizeDDNF (g) = s2, then sizeDDNF (f∧g) = 0·s2.

- If sizeDDNF (f) = 0, then f is the always false function. For any function g,
0 ∧ g = 0, so sizeDDNF (0 ∧ g) = 0.

• Inductive Hypothesis ∀s2, if sizeDDNF (f) = m and sizeDDNF (g) = s2, then sizeDDNF (f∧
g) = m · s2.

• Inductive Step ∀s2, if sizeDDNF = m + 1 and sizeDDNF (g) = s2, then sizeDDNF (f ∧
g) = (m + 1) · s2.

• Base Case If sizeDDNF = m + 1 and sizeDDNF (g) = 0, then sizeDDNF (f ∧ g) =
(m + 1) · 0.

- If sizeDDNF (g) = 0, then g is the always false function. For any function f ,
f ∧ 0 = 0, so sizeDDNF (f ∧ 0) = 0.

4



• Inductive Hypothesis If sizeDDNF (f) = m + 1 and sizeDDNF (g) = n, then
sizeDDNF (f ∧ g) = (m + 1) · n.

? Inductive Step If sizeDDNF = m+1 and sizeDDNF (g) = n+1, then sizeDDNF (f∧
g) = (m + 1) · (n + 1).

Intuitively, this last inductive step seems possible to prove. Let P = p1∨p2∨. . .∨pm+1 be a
minimal disjoint DNF for f and Q = q1∨q2∨. . .∨qn+1 be a minimal disjoint DNF for g. Then,

P ∧Q =
∨m+1

i=1

∨n+1
j=1 (pi ∧ qj) =

[ ∨m+1
i=1

∨n
j=1(pi ∧ qj)

]
∨

[ ∨m+1
i=1 (pi ∧ qn+1)

]
. By the inductive

hypothesis, we know that
∨m+1

i=1

∨n
j=1(pi∧qj) is a minimal disjoint DNF of size (m+1) ·n for

f ∧g, if sizeDDNF (f) = m+1 and sizeDDNF (g) = n. It is also clear that
∨m+1

i=1 (pi∧qn+1) is a
minimal disjoint DNF of size m+1 for f ∧ g, if sizeDDNF (f) = m+1 and sizeDDNF (g) = 1.

However, it is unclear how to prove that
[ ∨m+1

i=1

∨n
j=1(pi ∧ qj)

]
∨

[ ∨m+1
i=1 (pi ∧ qn+1)

]
is a

minimal disjoint DNF for f ∧ g, if sizeDDNF (f) = m + 1 and sizeDDNF (g) = n + 1. In
lemma 2, I showed that for any minimal disjoint DNF T of size s, the expression obtained
by deleting any term from T is a minimal disjoint DNF of size s − 1. If something could
be said about the opposite direction, that is, if some conditions could be determined about
forming a minimal disjoint DNF of size s by adding a term to minimal disjoint DNF of size
s− 1, then I believe the inductive step could be proved.

The only way I have been able to prove (1) for any fixed n is by exhaustively considering
all functions on n variables. I have, in fact, done this for n = 1, 2,and 3.

I have also attempted to prove that for any two boolean functions f : {0, 1}n1 → {0, 1}
and g : {0, 1}n2 → {0, 1} and two sets of disjoint variables x = (x1, ...xn1) and y = (y1, ...yn2),
if P is a minimal disjoint DNF for f(x) of size s1 and Q is a minimal disjoint DNF for g(x)
of size s2, then P ∧ Q is minimal disjoint DNF for f ∧ g of size s1 · s2. Clearly, P ∧ Q is a
disjoint DNF for f ∧ g of size s1 · s2. Showing that P ∧ Q is minimal, however, has proved
to be a difficult task. There really is no precise definition for a minimal representation of
a function other than its size is smaller than any other representation of the function. A
minimal representation is not unique, and there certainly are other minimal disjoint DNF
representations other than P ∧Q for f ∧ g.

5 Conclusion

In my attempt to prove that for any two boolean functions f : {0, 1}n1 → {0, 1} and
g : {0, 1}n2 → {0, 1} and two sets of disjoint variables x = (x1, ...xn1) and y = (y1, ...yn2),

sizeDCD(f(x)⊕ g(y)) = sizeDCD(f(x)) · sizeDCD(g(y))

I have only managed to show that

sizeDCD(f ⊕ g) = sizeDDNF (f ∧ ḡ)+ sizeDDNF (f̄ ∧ g)+ sizeDDNF (f ∧ g)+ sizeDDNF (f̄ ∧ ḡ).

It remains to be shown that

sizeDDNF (f ∧ g) ≥ sizeDDNF (f) · sizeDDNF (g)
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holds for any two boolean functions on disjoint variables. I am thouroughly convinced that
this is true and that it can in fact be proven.
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