Optimal Decision Tree Size vs. Minimal Disjoint CDNF size for a specific Boolean Function of Degree 6

Livia Overand

July 6, 2005

Bshouty shows that for any two boolean functions $f:\{0,1\}^{n 1} \rightarrow 0,1$ and $g:\{0,1\}^{n 2} \rightarrow$ $\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n 1}\right)$ and $y=\left(y_{1}, \ldots y_{n 2}\right)$ we have

$$
\operatorname{size}_{D T}(f(x) \oplus g(y))=\operatorname{size}_{D T}(f(x)) \cdot \operatorname{size}_{D T}(g(y))
$$

Bshouty also shows that for any two boolean functions $f:\{0,1\}^{n 1} \rightarrow\{0,1\}$ and g : $\{0,1\}^{n 2} \rightarrow\{0,1\}$ and two sets of disjoint variables $x=\left(x_{1}, \ldots x_{n 1}\right)$ and $y=\left(y_{1}, \ldots y_{n 2}\right)$ we have

$$
\operatorname{size}_{D C D}(f(x) \oplus g(y)) \leq \operatorname{size}_{D C D}(f(x)) \cdot \operatorname{size}_{D C D}(g(y))
$$

I have previously shown that the boolean function on three variables $f\left(x_{1}, x_{2}, x_{3}\right)=$ $x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}$ has a minimal disjoint CDNF of size 5 and an optimal decison tree of size 6. I will now determine the size of a minimal disjoint CDNF and an optimal decision tree for $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}\right) \oplus\left(x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}\right)$, which is the function that is the exclusive or of the previous function with itself on two sets of disjoint variables. In doing so, I am looking to support or disprove my conjecture that if any Boolean function on n variables can be represented by a minimal disjoint CDNF of size s, then the size of its corresponding optimal decision tree is at most $s^{\frac{\log 6}{\log 5}}$.

truth table for $\left(x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}\right) \oplus\left(x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}\right)$								
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	$x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}$	$x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}$	$\left(x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}\right) \oplus\left(x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}\right)$
0	0	0	0	0	0	1	1	
0	0	0	0	0	1	1		1
0	0	0	0	1	0	1		1
0	0	0	0	1	1	1		1
0	0	0	1	0	0	1		1
0	0	0	1	0	1	1		1
0	0	0	1	1	0	1		1
0	0	0	1	1	1	1	1	
0	0	1	0	0	0		1	1
0	0	1	0	0	1			
0	0	1	0	1	0			
0	0	1	0	1	1			
0	0	1	1	0	0			
0	0	1	1	0	1			
0	0	1	1	1	0			
0	0	1	1	1	1		1	1
0	1	0	0	0	0		1	1
0	1	0	0	0	1			
0	1	0	0	1	0			
0	1	0	0	1	1			
0	1	0	1	0	0			
0	1	0	1	0	1			
0	1	0	1	1	0			
0	1	0	1	1	1		1	1
0	1	1	0	0	0		1	1
0	1	1	0	0	1			
0	1	1	0	1	0			
0	1	1	0	1	1			
0	1	1	1	0	0			
0	1	1	1	0	1			
0	1	1	1	1	0			
0	1	1	1	1	1		1	1
1	0	0	0	0	0		1	1
1	0	0	0	0	1			
1	0	0	0	1	0			
1	0	0	0	1	1			
1	0	0	1	0	0			
1	0	0	1	0	1			
1	0	0	1	1	0			
1	0	0	1	1	1		1	1
1	0	1	0	0	0		1	1
1	0	1	0	0	1			
1	0	1	0	1	0			
1	0	1	0	1	1			
1	0	1	1	0	0			
1	0	1	1	0	1			
1	0	1	1	1	0			
1	0	1	1	1	1		1	1
1	1	0	0	0	0		1	1
1	1	0	0	0	1			
1	1	0	0	1	0			
1	1	0	0	1	1			
1	1	0	1	0	0			
1	1	0	1	0	1			
1	1	0	1	1	0			
1	1	0	1	1	1		1	1
1	1	1	0	0	0	1	1	
1	1	1	0	0	1	1		1
1	1	1	0	1	0	1		1
1	1	1	0	1	1	1		1
1	1	1	1	0	0	1		1
1	1	1	1	0	1	1		1
1	1	1	1	1	0	1		1
1	1	1	1	1	1	1	1	

$$
\begin{array}{lllllllll}
x_{4} & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
x_{5} & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
x_{6} & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}
$$

x_{1}	x_{2}	x_{3}								
1	1	1								
1	1	0								
1	0	0								
1	0	1								
0	0	1	1	1	1					
	1						1			
0	0	0					1			
0	1	0		1	1	1	1		1	1
	1	1	1					1		
1	1					1				

Figure 1: Karnaugh map for $\left(x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}\right) \oplus\left(x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}\right)$

$$
\begin{aligned}
& \left(x_{1} x_{2} x_{3} x_{4} \overline{x_{6}}+x_{1} x_{2} x_{3} \overline{x_{5}} x_{6}+x_{1} x_{2} x_{3} \overline{x_{4}} x_{5}+x_{1} \overline{x_{3}} x_{4} x_{5} x_{6}+\overline{x_{2}} x_{3} x_{4} x_{5} x_{6}+\overline{x_{1}} x_{2} x_{4} x_{5} x_{6}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}} x_{4} \overline{x_{6}}+\right. \\
& \overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{5}} x_{6}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} x_{5}+x_{1} \overline{x_{3}} \overline{x_{4}} \overline{x_{5}} \overline{x_{6}}+\overline{x_{2}} x_{3} \overline{x_{4}} \overline{x_{5}} \overline{x_{6}}+\overline{x_{1}} x_{2} \overline{x_{4}} \overline{x_{5}} \overline{x_{6}}, x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}+x_{1} x_{2} x_{3} \overline{x_{4}} \overline{x_{5}} \overline{x_{6}}+ \\
& x_{1} \overline{x_{3}} x_{4} \overline{x_{6}}+x_{1} \overline{x_{3}} \overline{x_{5}} x_{6}+x_{1} \overline{x_{3}} \overline{x_{4}} x_{5}+\overline{x_{2} x_{3} x_{4} \overline{x_{6}}+\overline{x_{2}} x_{3} \overline{x_{5}} x_{6}+\overline{x_{2}} x_{3} \overline{x_{4}} x_{5}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}} x_{4} x_{5} x_{6}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}} \overline{x_{4}} \overline{x_{5}} \overline{x_{6}}+} \\
& \overline{x_{1}} x_{2} x_{4} \overline{x_{6}}+\overline{x_{1}} x_{2} \overline{x_{5}} x_{6}+\overline{x_{5}} \overline{x_{2}}
\end{aligned}
$$

Figure 2: disjoint CDNF and decision tree for $\left(x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}\right) \oplus\left(x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}\right)$

Therefore, $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{1} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{x_{3}}\right) \oplus\left(x_{4} x_{5} x_{6}+\overline{x_{4}} \overline{x_{5}} \overline{x_{6}}\right)$ has a minimal disjoint CDNF of size 25 and an optimal decision tree of size 36. This conclusion supports Bshouty's findings as well as my conjecture that if any Boolean function on n variables can be represented by a minimal disjoint CDNF of size s, then the size of its corresponding optimal decision tree is at most $s^{\frac{\log 6}{\log 5}}$.

